Are there Significant Externality Effects of Remittances in Asian Economic Growth?

Gazi M Hassan
Department of Economics,
University of Waikato, Private Bag 3105,
Hamilton 3240, New Zealand
Email: gmhassan@waikato.ac.nz

Shamim Shakur
School of Economics and Finance,
Massey University,
Palmerston North, New Zealand
Email: s.shakur@massey.ac.nz
Are there Significant Externality Effects of Remittances in Asian Economic Growth?

1. Introduction

Workers’ remittances to developing countries were estimated at just US$47 billion in 1980 (constant 2011 dollars), and by 2010 the figure rose to a massive $321 billion. This unprecedented change in the flow of international transfers has left economists surprisingly unsure of its development effects. Some advocates a positive developmental impact of remittances, directly or indirectly (see; Giuliano and Ruiz-Arranz, 2009; Catrinescu et al., 2009; and Rao and Hassan, 2011, 2012). Others advocate a negative growth effects of remittances (see; Chami et al., 2003). A strikingly pessimistic view is that remittances hardly contributes positively to economic growth because there is no example of a country in which remittances-led growth contributed significantly to development (see; Barajas et al., 2009).

In deviation from previous literature, this paper endeavours to assess the externality effect of remittances on economic growth rather than its direct impact. In doing so, it is found that the externality effects of remittances are unambiguously positive even after controlling for the estimation problems associated with endogeneity, cross-sectional dependence and heterogeneity in the data.

2. The Model

Romer (1986) showed that externalities generated by the education sector can raise economy-wide labour productivity further. Likewise, remittances flows are also capable of generating positive externality because they can enhance the educational outcomes of the recipient households (Cox-Edwards and Ureta, 2003). Our analytical framework which is a generalisation of Lau and Sin (1997), uses a special form of Romer (1986) type production function to assess the impact of externalities generated by remittances in the economy, as follows:

\[
y_{ji} = A k_{ji}^\alpha \left[(1+\gamma) l_{ji}\right]^{1-\alpha} \tilde{K}_{it} \tilde{R} \Phi_{it}
\]
(1)
\[i=1...N, t=1...T, A > 0, \text{ and } 0 \leq \alpha, \text{ and } \lambda < 1 \] \hspace{1cm} (1a)

Where \(y_{jt}, k_{jt}, \text{ and } l_{jt} \) are the output, physical capital and labour inputs of agent \(j \) at time \(t \) in country \(i \) and \(\varepsilon_{jt} \) is the error term. \(\tilde{K} \) and \(\tilde{R} \) are respectively available aggregate level of (congestion adjusted) stock of private physical capital (\(K \)) and remittances (\(R \)) in the economy, and are considered external inputs in an agent’s production function which can produce spillover effects by facilitating investments in social and human capital. In Eq. (1), with respect to capital and labour inputs for a representative agent there is constant returns to scale and a competitive equilibrium exists such that all private factors are paid according to their marginal products exhausting all output. The parameters \(\lambda \) and \(\phi \) represent the externality effects of country-wide physical capital and remittances. For \(K_{u} \) and \(R_{u} \), the congestion effect is defined as follows:

\[
\tilde{K}_{u} = \frac{K_{u}}{K_{u}^\phi (1 + \gamma) L_{u}^{1-\phi}} \quad \text{and} \quad \tilde{R}_{u} = \frac{R_{u}}{K_{u}^\phi (1 + \gamma) L_{u}^{1-\phi}} \hspace{1cm} (2)
\]

Where \(0 \leq \phi \leq 1 \). \(K_{u} \) and \(R_{u} \) represent the aggregate level of \(K \) and \(R \) external to the production function outlined above. Substituting (2) in (1), and assuming that \(y_{jt} = y_{u} \) and \(k_{jt} = k_{u} \) gives us the following growth equation:

\[
y_{u} = A k_{u}^{(\alpha + \lambda - (\lambda + \phi)\phi)} (1 + \gamma)^{1 - (\lambda - (\lambda + \phi)(1 - \phi))} r^\phi \varepsilon_{u} \hspace{1cm} (3)
\]

The lower case variables are all in per capita terms, and the model allows us to estimate the externality effects of remittances on economic growth.

3. Data and Empirical Specification

The model in Eq. (3) is tested for a group of countries in Asia that receive substantial remittances flows over the period 1970–2009. The countries are chosen mainly from South Asia but also complemented with some East and Southeast Asian counterparts. The countries are Bangladesh, Bhutan, Cambodia, China, India, Indonesia, Lao, Malaysia, Maldives, Myanmar, Nepal, Pakistan, Philippines, Singapore, Sri Lanka, Thailand and Vietnam. India is the largest net remittances recipient in the world followed by China and Philippines. Data up to
2003 on \(y_{it} \) (real GDP per person) and \(k_{it} \) (physical capital stock per person) are taken from Bosworth and Collins (2003) and updated to 2009. Note that Eq. (3) requires data on remittances stock per person \((r_{it}) \) rather than remittances flow per year. Remittances stock is constructed analogous to the perpetual inventory method used to measure physical capital stock. We assume fifty percent of the yearly remittances flow is invested into business enterprise, land and housing, education and health. The initial period remittances stock, which varies according to country and year, is assumed to be one third of the value of the first officially recorded remittances flows in each country. Five percent of the previous period’s remittances stock is assumed to be depreciated each year. Data on remittances flow is gathered from World Bank’s World Development Indicator (2011).

Note that the growth model in Eq. (3) can be expressed in log form as follows:

\[
\ln(y_{it}) = \beta_1 + \beta_2 \ln k_{it} + \beta_3 \ln r_{it} + \beta_4 t + \ln \epsilon_{it}
\]

(4)

where,

\[
\beta_1 = \ln(A); \quad \beta_2 = (\alpha + \lambda - (\lambda + \varphi)\phi),
\]

\[
\beta_3 = \varphi \text{ and}
\]

\[
\beta_4 = \gamma(1 - \alpha) - [(\lambda + \varphi)(1 - \phi)]
\]

Eq. (4) is the econometric specification of the growth model given by Eq. (3) which is taken to the data, making possible to estimate the externality effects of remittances flows via \(\beta_3 \).

4. Results

Our methodology involves estimating a long-run relationship between log of per capita output, capital and remittances stock per head using panel cointegration. Although in theory, the presence of three variables leaves open the possibility that there is more than one panel cointegrating vector present, our prime concern is with the overall long-run relationship between \(y \) and \(k, r \) encapsulated in the single Eq. (4).

\[^1\text{We assume, } \gamma \text{ is small such that } (1 + \gamma) \text{ is approximated by } \gamma \text{ (see Lau and Sin 1997b).}\]
Our empirical procedure is divided into two parts. The first part includes unit root testing and panel tests for joint non-cointegration. The second part includes estimation of the long-run growth model given by Eq. (4).

We first check for cross-sectional dependence (CD) in the data and in the errors, stemming from the presence of common shocks and unobserved components that ultimately become part of the error term (Pesaran, 2004). Table 1. show the results of Pesaran (2004) CD-test confirming cross-sectional dependency among the variables \(y \) and \(k, r \) as well as on the residual based on a regression among the variables using fixed (within) effect estimator. In the presence of cross-section dependence, we apply the CIPS unit-root test suggested by Pesaran (2007) which allows for heterogeneity in the autoregressive coefficient of the augmented Dickey-Fuller (ADF) regression in the data. Table 2 reports the CIPS panel unit root tests on \(y \) and \(k, r \) including 3 lags in the ADF regressions\(^2\) and provides evidence of non-stationarity of all the three variables, both when an intercept only is included in the specification and when an intercept and a trend are included. All the three variables are I(1) in level and I(0) in first differences.

We test for co-integration among the I(1) variables using the tests developed by Pedroni (1997, 1999, 2004) where under the alternative hypothesis of cointegration, the autoregressive coefficient is allowed to vary across countries, allowing one to model potential heterogeneity across countries. Pedroni provides seven test statistics that can be used to test the null of no cointegration in the multivariate case. These test statistics are grouped into two categories: ‘group mean’ statistics and ‘panel’ statistics.

Table 3 presents the results of Pedroni (1999, 2004) panel cointegration test for the full model. As a procedure to correct for the cross sectional dependency in our panel data we have subtracted out the common time effects from the three variables in our model using the time-demeaning method prescribed in Pedroni (1997, 2004). Six out of seven test statistics reject the null of no-cointegration at one percent level of significance. Therefore our results strongly advocate that a long-run cointegrating relationship exists between \(y, k, \) and \(r \).

We now estimate Eq. (4) where the variables are co-integrated using Panel Dynamic OLS (PDOLS) (Pedroni, 2001) estimator. For comparison purpose we also report results by the fixed-Effects (FE) and Pooled Mean Group (PMG) (Pesaran et al., 1999) estimators.

\(^2\) Some robustness checks show that the results reported do not change when varying the number of lags included in the ADF regression.
Standard dynamic panel data models fail to account for country specific heterogeneity by imposing common coefficients, and hence are not employed.

The PDOLS estimator is a panel extension of the single time series Dynamic OLS (DOLS) estimator that was proposed by Stock and Watson (1993). Given that the variable r is most likely endogenous in the model, the use of PDOLS estimator is well justified because DOLS estimator is asymptotically unbiased and normally distributed even in the presence of endogenous regressors. Consequently, in contrast to cross-section and conventional panel approaches, the PDOLS does not require exogeneity assumptions nor does it require the use of instruments. In addition, the group-mean PDOLS estimator is super-consistent under cointegration, and is robust to the omission of variables that do not form part of the cointegrating relationship. To account for certain forms of cross-sectional dependence, the PDOLS procedure allows time-demeaning the data.

Table 4 reports the results of the long-run estimation of equation (4) by the PDOLS estimator in column 1. It can be seen that the estimated sign on the variable remittances stock (r) is positive and it is significant at 1 percent. Being a log-log model, the coefficient imply that a 1 percent increase in r can increase y by 0.06%. This is the estimated size of the externality effect of remittances on economic growth, which is small but significantly positive. For comparison we can look at estimates of the FE and PMG estimators in columns 2 and 3 respectively. In both cases the externality effects of remittances are positive and significant at 1 percent. The estimated coefficient of r is 0.05 in the FE estimates and 0.13 in the PMG estimates. PMG estimator can lead to a higher estimated coefficient of r because economic conditions are restricted to be common across countries in the long-run, while allowing for heterogeneous short-run dynamics.

5. Conclusion

In years whether remittances contribute to economic growth in the recipient economies has become a highly contestable topic. Because there is less debate on whether remittances can contribute to development of human capital, this paper has focused on measuring the externality effects of remittances rather growth effects which can materialise in the overall economy when remittances incomes are spent on children’s education and health. Having appropriately modelled remittances’ externality effect in a growth framework, we found evidence of a cointegrating relationship between per capita output, capital and remittances
Using group-mean PDOLS methodology, the major finding of our paper is that the externality effects of remittances are small but unequivocally positive in a group of Asian countries that received substantial remittances flows over the period 1970 – 2009.

References

Tables

Table 1. Pesaran (2004) Cross-Section Dependence (CD) Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>CD-test</th>
<th>p-value</th>
<th>correlation</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>40.98</td>
<td>0.00</td>
<td>0.87</td>
<td>CSD</td>
</tr>
<tr>
<td>k</td>
<td>27.52</td>
<td>0.00</td>
<td>0.58</td>
<td>CSD</td>
</tr>
<tr>
<td>r</td>
<td>40.85</td>
<td>0.00</td>
<td>0.87</td>
<td>CSD</td>
</tr>
<tr>
<td>Residual</td>
<td>11.60</td>
<td>0.00</td>
<td>0.24</td>
<td>CSD</td>
</tr>
</tbody>
</table>

Notes: Under the null hypothesis of cross-section independence CD ~ N(0,1)

Table 2. Pesaran (2007) CIPS Panel Unit Root Tests

<table>
<thead>
<tr>
<th>Variable</th>
<th>Intercept only</th>
<th>only Intercept & trend</th>
<th>Variable</th>
<th>Intercept only</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3.350</td>
<td>5.441</td>
<td>Δy</td>
<td>-2.522***</td>
</tr>
<tr>
<td>k</td>
<td>6.485</td>
<td>5.723</td>
<td>Δk</td>
<td>-2.204**</td>
</tr>
<tr>
<td>r</td>
<td>4.573</td>
<td>4.411</td>
<td>Δr</td>
<td>-3.361***</td>
</tr>
</tbody>
</table>

Note: ***, ** & *: Significant at 1, 5 & 10 percent level respectively.
Table 3. Panel Data Cointegration Tests

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Within dimension)</td>
<td></td>
</tr>
<tr>
<td>Panel V-Statistic</td>
<td>3.577</td>
</tr>
<tr>
<td>Panel rho-Statistic</td>
<td>-2.379</td>
</tr>
<tr>
<td>Panel pp-Statistic</td>
<td>-6.451</td>
</tr>
<tr>
<td>Panel ADF-Statistic</td>
<td>-7.598</td>
</tr>
<tr>
<td>(Between dimension)</td>
<td></td>
</tr>
<tr>
<td>Group rho-Statistic</td>
<td>0.265</td>
</tr>
<tr>
<td>Group pp-Statistic</td>
<td>-5.927</td>
</tr>
<tr>
<td>Group ADF-Statistic</td>
<td>-5.387</td>
</tr>
</tbody>
</table>

Notes: Variables are time demeaned and trend included. Individual lag lengths are based on the SIC. ***, ** and * denote rejection of the null of non-cointegration at the 1, 5 and 10% significance levels.
Table 4. Estimation of Long-Run Relationship for the Variables in Eq. (4)

<table>
<thead>
<tr>
<th>Variables (Coefficients)</th>
<th>Dependent Variable: (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) PDOLS</td>
</tr>
<tr>
<td>(k (\beta_2))</td>
<td>0.222 (6.43)**</td>
</tr>
<tr>
<td>(r (\beta_1))</td>
<td>0.059 (5.26)***</td>
</tr>
<tr>
<td>Adj – (R^2)</td>
<td>0.87</td>
</tr>
<tr>
<td>Observations</td>
<td>281</td>
</tr>
<tr>
<td>Number of Countries</td>
<td>14</td>
</tr>
</tbody>
</table>

Notes: Notes: ***, **, * indicate significance at the 1 per cent, 5 per cent and 10 per cent level respectively. \(t \) statistics are in brackets. Variables time demeaned, constant and a trend are included. Lags and leads in the PDOLS chosen according to SIC.